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√
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Solutions:

1. The number is the recurring decimal 0.0̇76923̇. Note that 0 + 7 + 6 + 9 + 2 + 3 = 27

and 2023 = 27 × 75 − 2. Hence there should be 75 periods of ‘307692’ with the last ‘2’

removed. The answer is thus 75× 6− 1 = 449.

2. Note that
√

2023 = 17
√

7. Hence we must have
√
m = p

√
7 and

√
n = q

√
7 (see remark

below), where p and q are positive integers with sum 17. We have

m+ n = 7p2 + 7q2 = 7p2 + 7(17− p)2 = 14

[(
p− 17

2

)2

+
289

4

]
,

which is maximised when p is as far away from 17
2

as possible. We should take either

(p, q) = (1, 16) or (16, 1), and the answer is thus 7(1)2 + 7(16)2 = 1799.

Remark. It is intuitive that both
√
m and

√
n should be integer multiples of

√
7. For a

rigorous proof, note that 2023 = (
√
m+
√
n)2 = m+n+ 2

√
mn, so mn must be a perfect

square. It follows that m = ab2 and n = ac2 for some positive integers a, b, c. Then√
m+
√
n =
√

2023 simplifies to (b+ c)
√
a =
√

2023, or a(b+ c)2 = 7 · 172. It follows that

a can only be 7 as b+ c > 1.

3. For convenience we shall use the term ‘red number’ to the number on a card with a red

sticker, and similarly for ‘blue number’. Clearly, a red number, being a row maximum,

is at least 20. Also, since A is the smallest red number, there are 19 other red numbers

greater than A, so A is at most 381. The same is true for B. That is, both A and B are

between 20 and 381 (inclusive), and so |A−B| is at most 361.
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We shall prove that all these 362 possibilities (from 0 to 361) for |A−B| are attainable.

Indeed, we can make A = 381 and B can be equal to any value between 20 and 381.

To make A = B = 381 we can use the following configuration (the arrangements of the

starred entries are unimportant):

381 * * · · · *

* 382 * · · · *

* * 383 · · · *
...

...
...

. . .
...

* * * · · · 400

On the other hand for any B ∈ {20, 21, ..., 380}, we can use the following configuration

to obtain such value of B while having A = 381:

1 * * · · · * 381

2 382 * · · · * *

3 * 383 · · · * *
...

...
...

. . .
...

...

19 * * · · · 399 *

B * * · · · * 400

It follows that the answer is 362.

4. Let the three consecutive positive integers be n, n + 1 and n + 2. Then 1 ≤ n ≤ 2021.

Since multiples of 6 and 8 must be even, we must have n+ 1 being divisible by 7 whereas

n and n+ 2 are divisible by 6 and 8 in either order.

• If n is divisible by 6, then n leaves a remainder of 6 when divided by each of 7 and

8 (so that n + 1 is divisible by 7 and n + 2 is divisible by 8). Hence n = 56k + 6

for some integer k, and for n to be divisible by 6, k must be divisible by 3. Since

1 ≤ n ≤ 2021, there are 12 possible values of k, namely, 0, 3, 6, ..., 33.

• If n is divisible by 8, then n leaves a remainder of 6 when divided by 7 and a

remainder of 4 when divided by 6 (so that n+1 is divisible by 7 and n+2 is divisible

by 6). Hence n = 42k + 34 = 8(5k + 4) + 2(k + 1) for some integer k, and for n to

be divisible by 8, we must have k ≡ 3 (mod 4). Since 1 ≤ n ≤ 2021, there are 12

possible values of k, namely, 3, 7, 11, ..., 47.

It follows that the answer is 12 + 12 = 24.

Remark. If one knows the Chinese remainder theorem, one can deduce more quickly that

there are exactly two choices of n among any 168 consecutive positive integers subject to

the upper bound of 2023 (here 168 is the L.C.M. of 6, 7 and 8), and hence the answer

can be obtained more quickly.
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5. Set the origin at A and the directions of AD and AB be the positive x-axis and positive

y-axis respectively. Then the coordinates of E and F are (3, 1) and (1, 3) respectively.

x

y

A

B C

D

E

F

G

H

The circumcircle of 4AEF has equation x2 + y2 + kx+ ky = 0 for some k (note that the

constant term vanishes as the circle passes through the origin, and that the coefficients

of x and y are the same by symmetry). Setting x = 3 and y = 1 gives k = −5
2
.

Let the coordinates of G be (g, 1). Putting this into the equation of the circle, we get

g2 + 12 − 5
2
g − 5

2
(1) = 0, or 1

2
(g − 3)(2g + 1) = 0. Hence g = −1

2
, i.e. G has coordinates

(−1
2
, 1). By symmetry, the coordinates of H are (1,−1

2
). It follows that GH = 3

2

√
2.

Alternative solution. We may also solve the problem using pure geometry. Note that

AG = AH by symmetry. Hence they subtend equal angles on the circumference of the

circumcircle, i.e. we have ∠AFG = ∠AFH. Suppose FA meets GE at I.

A

I

B C

D

E

F

G

H

By similar triangles, we have BI : IC = AB : CF = 1 : 2. Hence IC = 2
3
. Let GC = x.

Using the angle bisector theorem (see remark below), we have GI : IC = FG : FC, i.e.

x− 2
3

2
3

=

√
x2 + 22

2
.
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Solving gives x = 3
2
. By symmetry, HC also has length 3

2
and so GH = 3

2

√
2.

Remark. The angle bisector theorem asserts that the internal bisector of an angle of a

triangle divides the opposite side in a ratio proportional to the lengths of the other two

sides, i.e. in the figure below we have BD : DC = AB : AC.

A

B C
D

The theorem can be proved by using the sine formula in 4ADB and 4ADC, or by

considering a point E on the extension of AD such that AB and CE are parallel (and

then making use of similar triangles). There is also an external version, which says

essentially the same thing except that we are considering the bisector of an external angle

meeting the extension of the opposite side, dividing it in the same (external) ratio. More

precisely, it says that in the figure below we again have BD : DC = AB : AC.

A

B
CD

The proof can be obtained by slightly modifying a proof of the internal version of the

theorem.

6. Note that

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4
.

Hence, for n+ 3 to divide 13 + 23 + · · ·+n3, it is necessary for n2(n+ 1)2 to be a multiple

of n+ 3, or equivalently, by setting m = n+ 3,

n2(n+ 1)2 = (m− 3)2(m− 2)2 = m4 − 10m3 + 37m2 − 60m+ 36

must be a multiple of m. Hence m = n + 3 must be a factor of 36. To find the greatest

possible value of n, we proceed as follows:
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• If m = 36 (i.e. n = 33), we have 13 + 23 + · · ·+ 333 =
332 · 342

4
= 332 · 172 which is

odd (and hence not divisible by n+ 3 = 36).

• The next largest possible value of m is 18 (corresponding to n = 15), in which case

we have

13 + 23 + · · ·+ 153 =
152 · 162

4
= 152 · 82 = 26 · 32 · 52,

which is divisible by n+ 3 = 2 · 32.

It follows that the answer is 15.

7. Let the lengths of AB, AC and AD be b, c, d respectively.

A

B C
D14 60

60◦

150◦
b c

d

The area of 4ABC is 1
2
bc sin 150◦. Alternatively, using BC as base, the height of the

triangle is d sin 60◦ and so the area is also equal to 1
2
(74)d sin 60◦. This gives

1

2
bc sin 150◦ =

1

2
(74)d sin 60◦,

which simplifies to bc = 74
√

3d. Using this and the cosine formula, we have

742 = b2 + c2 − 2bc cos 150◦

= [d2 + 142 − 2d(14) cos 60◦] + [d2 + 602 − 2d(60) cos 120◦]− 2(74
√

3d) cos 150◦

= 2d2 + 268d+ 3796,

which simplifies to 2(d − 6)(d + 140) = 0. Hence d = 6 and so the area of 4ABC is
1
2
(74)d sin 60◦ = 111

√
3.

8. A sketch of the graphs of y = log3 x and y = 3 sin(3πx) is as follows:

x

y

3

−3

0 1 2 3
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Note that the right hand side of the equation (i.e. 3 sin(3πx)) must be between −3 and 3.

Hence any solution satisfies −3 ≤ log3 x ≤ 3, or 1
27
≤ x ≤ 27. There are three solutions

for x ≤ 1 as shown in the graph above. For x ∈ (1, 27], we have log3 x > 0 and the

function 3 sin(3πx) is positive in 39 intervals, namely, (4
3
, 5
3
), (6

3
, 7
3
), ..., (80

3
, 81

3
). In each

of these intervals the graph of log3 x > 0 intersects the graph of 3 sin(3πx) at exactly two

points. The answer is thus 3 + 39(2) = 81.

9. Note that when x = 1, the expressions inside both cube roots are equal to 0. In view of

the factor theorem, we can factorise the expressions to get

3
√

(x− 1)(x+ 2)2 − x = 3
√

(x− 1)2(x+ 2)− 1.

If we let u = 3
√
x− 1 and v = 3

√
x+ 2, the equation becomes uv2 = u2v + u3, or

u(u2 + uv − v2) = 0.

If u = 0, then x = 1. If there is another root x > 1, then u, v must both be positive,

so u2 + uv − v2 = 0 gives u = λv where λ = 1
2
(−1 +

√
5). Hence u3 = (λv)3, i.e.

x− 1 = λ3(x+ 2), so we have

x =
1 + 2λ3

1− λ3
=

1 + 2(
√

5− 2)

1− (
√

5− 2)
=

1 + 3
√

5

4
.

It is easy to check that such x indeed satisfies the original equation, and hence is the

largest real root to the equation.

10. Let f(n) = n(n+ 1)(n+ 2)(n+ 3)(n+ 4). Note that

f(n+ 1)− f(n) = (n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)− n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

= 5(n+ 1)(n+ 2)(n+ 3)(n+ 4).

Hence we have

1× 2× 3× 4 =
f(1)− f(0)

5
, 2× 3× 4× 5 =

f(2)− f(1)

5
, and so on.

It follows that the sum in the question is equal to

f(1)− f(0)

5
+
f(2)− f(1)

5
+ · · ·+ f(2023)− f(2022)

5
=
f(2023)− f(0)

5
=
f(2023)

5
,

which in turn is equal to

2023× 2024× 2025× 2026× 2027

5
= 405× 2023× 2024× 2026× 2027.

Taking modulo 1000, it suffices to consider

405× 23× 24× 26× 27 = 405× (252 − 22)× (252 − 12)

= 405× 624× 621

= 10× (81× 312× 621).
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It thus suffices to consider the last two digits of 81 × 312 × 621, or simply the last two

digits of 81× 12× 21. Direct computation shows that they are 12, and so the answer is

120.

11. With some initial trials, we can list the numbers of the students who get candies:

1, 2, 4, 5, 10, 11, 13, 14, 28, 29, ...

The numbers seems to be related to powers of 3 (this becomes more evident when more

numbers are listed). Indeed, the base 3 representation of the numbers are

1, 2, 11, 12, 101, 102, 111, 112, 1001, 1002, ...,

and if we subtract 1 from each number, they become the following

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, ...,

which are precisely those whose base 3 representations consist of the digits 0 and 1 only.

Indeed, we can easily prove by induction that student n gets a candy if and only if the

base 3 representation of n − 1 consists of the digits 0 and 1 only (call such a positive

integer n ‘good’). This statement holds for the numbers we have listed. Now suppose n

is larger than 29 and the statement holds for smaller n.

• Suppose n is good. If student n does not get a candy, there exist students ` and m

who both got candies (where ` < m < n) and such that `, m, n form an arithmetic

sequence. Consider the numbers ` − 1, m − 1, n − 1 (in base 3, same for below).

They all consist of the digits 0 and 1 only, and 2(m− 1) = (`− 1) + (n− 1). This is

impossible, since each digit on the left is 0 or 2, while at least one digit on the right

is 1 (there is no carry in the addition, and there must be at least a place which gives

0 + 1 since ` − 1 6= n − 1). This contradiction establishes the fact that student n

gets a candy.

• Suppose n is not ‘good’, so at least one digit (say, the one whose place value is 3k

of the base 3 representation of n− 1 is 2. Then student n cannot get a candy since

students n− 2 · 3k and n− 3k both get candies. (For example, if n = 47 then n− 1

has base 3 representation 1201. Both students 29 and 38 got candies since the base

3 representations of 28 and 37 are respectively 1001 and 1101. As 29, 38, 47 form

an arithmetic sequence, student 47 cannot get a candy.)

This completes the induction. Note that 202310 = 22022213. So the largest n which is

‘good’ has the property that the base 3 representation of n− 1 is 1111111. The answer is

thus 27 = 128.

Remark. As long as only the answer is needed for the purpose of the contest, one can

reasonably expect that the pattern observed will likely hold in general without going

through the inductive proof. Of course the latter is needed if a rigorous treatment is

required.
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12. Suppose the line through P perpendicular to BC and AD (the red line in the figure)

meets AD at E and BC at F . Then we have

42 − 12 = (DE2 + PE2)− (AE2 + PE2) = DE2 − AE2 = (DE + AE)(DE − AE).

If we draw another line perpendicular to BC and AD (the blue line in the figure) such

that its distance from D is equal to AE, then DE − AE is simply the distance between

the red and blue lines, which we denote by x.

A

B C

D

P

E

F

1

2 3

4

x

Hence we have AD · x = 42 − 12. By symmetry we have BC · x = 32 − 22. It follows that

AD : BC = (42 − 12) : (32 − 22) = 3 : 1.

Remark. The solution works regardless of whether P is inside or outside the trapezium.

Alternatively, we could avoid worrying about the relative position of P by using coordinate

geometry. Set the x-axis along AD and the origin at the mid-point of AD. Then we may

let the coordinates of A, B, C, D be (−n, 0), (−m, k), (m, k) and (n, 0) respectively.

x

y

A(−n, 0)

B(−m, k) C(m, k)

D(n, 0)

Let the coordinates of P be (p, q). Using PA = 1 and PD = 4, we get

(p+ n)2 + q2 = 12 and (p− n)2 + q2 = 42.

Upon subtraction we get 4pn = −15. Similarly, using PB = 2 and PC = 3 we get

4pm = −5. Hence AD : BC = n : m = 3 : 1.
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13. Note that DC =
√

3, ∠DBC = 60◦ and ∠DCB = 30◦. In particular, we notice that

AB : AC = DB : DC, so the angle bisector theorem (see remark after Question 5) seems

relevant. Let the internal and external bisector of ∠BDC meet CB and its extension at

P and Q respectively.

D

Q
B P

C

1
√

3

60◦ 30◦

Note that the internal and external bisector are always perpendicular. Hence the circle

with PQ as diameter passes through D. As we know that ∠QDB = 45◦ and ∠BDC =

90◦, we have ∠DQP = 180◦ − ∠QDC − ∠DCQ = 15◦. Now the key observation comes

in. Since AB : AC = DB : DC, the internal and external bisector of ∠BAC meet CB

and its extension at the same P and Q as a consequence of the angle bisector theorem,

and A also lies on the same circle with PQ as diameter:

D

A

Q
B P

C15◦

Note that ∠DAP = ∠DQP = 15◦. Hence ∠PAB = ∠PAC = 15◦+18◦ = 33◦. It follows

that ∠DAB = ∠DAP + ∠PAB = 15◦ + 33◦ = 48◦.

Remark. More generally, whenever D is a point inside 4ABC such that AB : AC =

DB : DC, then we have ∠BAD−∠CAD = ∠DBC −∠DCB. The proof can be worked

out in essentially the same way as in the above solution. The circle with PQ as diameter

is known as the Apollonius circle with foci B, C and ratio BP : PC.

14. Note that 74 and 111 have a common factor of 37. Also, 87 and 124 are 13 greater than

74 and 111 respectively. We call the coins with denominations $87 and $124 ‘bad coins’.

Note that 2023 ≡ 25 (mod 37). Hence we must use k bad coins such that 13k ≡ 25

(mod 37). The smallest such k is 19 (see remark), and hence we muse have k = 19

(because the next k would be 19 + 37, and the total amount will surely exceed $2023).
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We note that 2023 = 19×87+370. To pay exactly $2023, we may start with 19 coins with

denomination $87, and add 10 units of $37. This can be done by using a $74 coin (which

contributes 2 units), a $111 coin (which contributes 3 units), or by replacing a $87 coin

by a $124 coin (which contributes 1 unit). Hence the problem is reduced to solving the

equation 2a + 3b + c = 10 in non-negative integers. Since each choice of (a, b) for which

2a+ 3b ≤ 10 gives a unique choice of c, we only have to solve the inequality 2a+ 3b ≤ 10

in non-negative integers. We find that there are 14 solutions as shown below, and so the

answer is 14.

Value of b Possible corresponding values of a

0 0, 1, 2, 3, 4, 5

1 0, 1, 2, 3

2 0, 1, 2

3 0

Remark. To solve the congruence 13k ≡ 25 (mod 37), the formal way is to multiply

both sides by the inverse of 13 modulo 37, which is 20 (as 13 · 20 ≡ 1 (mod 37)), but

in this case it may be easier to just use trial and error, i.e. we consider the arithmetic

sequence starting with 25 and with common difference 37, namely, 25, 62, 99, 136, ...,

and look for the first term that is divisible by 13. The first such term turns out to be

247, so k can be found by solving 13k = 247.

15. We first make a few observations.

• The sum of the numbers on all cards is 0. Hence each row sum being non-negative

is equivalent to each row sum being 0.

• For the same reason as above, each column sum must be 0.

• The card −4 cannot be placed in a corner cell. Indeed, if −4 is placed in a corner

cell as shown below, then the sum of the numbers in the two red cells is 4, the sum

in the yellow cells is 4 and the sum of the green cells is at least 4. This is impossible

since the sum of the positive numbers on the cards is only 1 + 2 + 3 + 4 = 10.

−4

• In essentially the same way we can prove that the card −4 cannot be placed in the

central cell.

From the above observations, there are 4 choices for the position of −4. After the position

of −4 is fixed as shown below, there are 4 choices for the red cells (we either put in {0, 4}
or {1, 3} in either order), and then 2 choices for the yellow cells (we put in the remaining

pair in either order).
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−4

This gives a total of 4× 4× 2 = 32 ways to fill in five cells. There is then only one way

to fill in the remaining cells using the numbers −3, −2, −1 and 2. For instance, suppose

we have filled the cells in the following way, with a, b, c, d denoting the numbers yet to

be filled in:

1 −4 3

a 0 b

c 4 d

Considering the rows we need a + b = 0 and c + d = −4, so {a, b} = {2,−2} and

{c, d} = {−1,−3}. Considering the columns we need a + c = −1 and b + d = −3 too.

Hence the only possibility is (a, b, c, d) = (2,−2,−3,−1). It remains to check whether

these 32 ways also satisfy the requirement that the two diagonal sums are non-negative.

We start with the following 4 cases with the position of −4 fixed:

1 −4 3

2 0 −2

−3 4 −1

1 −4 3

−3 4 −1

2 0 −2

0 −4 4

2 1 −3

−2 3 −1

0 −4 4

−2 3 −1

2 1 −3

All cases have both diagonal sums being non-negative. The other 4 cases with −4 in the

same position must therefore also have the same property, since they are obtained by

swapping the first and third columns from the 4 cases above:

3 −4 1

−2 0 2

−1 4 −3

3 −4 1

−1 4 −3

−2 0 2

4 −4 0

−3 1 2

−1 3 −2

4 −4 0

−1 3 −2

−3 1 2

The other cases (where the position of −4 is different) can be obtained by rotating one

of the above configurations. Hence all 32 ways of filling in the table in which all row and

column sums are zero will also have both diagonal sums being non-negative. It follows

that the answer is 32.
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16. There are 212 = 4096 possible outcomes and we want to count how many of these enable

the team to win. To do this, we let the 12 players form 6 pairs so that the members

of each pair are diametrically opposite. Note that the positions of four players form a

rectangle if and only if they form two pairs.

Call a pair ‘bad’ if the two players put up flags of the same colour. Note that if there are

three or more bad pairs, then at least two pairs will both have chosen the same colour,

so the team loses. Hence for the team to win, there are three possibilities:

• There is no bad pair — that means for each pair the two players will put up flags

of different colours (2 possibilities for each pair), so there are altogether 26 = 64

possibilities for this case.

• There is one bad pair — there are 6 choices for the bad pair, and regardless of

whether a pair is good or bad, there are 2 possible combinations of flag colours for

each pair. Hence there are 6× 26 = 384 possibilities for this case.

• There are two bad pairs — there are
(
6
2

)
= 15 choices for the bad pairs, and one bad

pair must put up red flags and the other bad pair must put up blue flags (otherwise

the team loses), giving 2 possibilities. There are 2 possible combinations of flag

colours for each of the other 4 pairs, and so there 15× 2× 24 = 480 possibilities for

this case.

It follows that the answer is
64 + 384 + 480

4096
=

29

128
.

17. To make use of the condition ∠APD + ∠BPC = 180◦, we translate 4APD to 4BQC
so that the condition becomes ∠BQC + ∠BPC = 180◦. This means BQCP is a cyclic

quadrilateral. Draw a line through P parallel to AB. This line passes through Q, and let

E and F be the points where this line meets AD and BC respectively.

A B

CD

E
FP

Q

3

4

Note that AB = PQ due to the translation. Hence BC = PQ, so they subtend equal

angles on the circumference of the circle. Equating the angles subtended on the major

arcs gives ∠BPC = ∠QCP (note that ∠BPC is given to be acute, and that ∠QCP
is acute since PB < PC). Equating the angles subtended on the minor arcs gives

∠BQC = ∠PBQ. Since we also have ∠BQC + ∠BPC = 180◦, it follows that the
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cyclic quadrilateral BQCP is actually an isosceles trapezium with BQ and PC paral-

lel. Hence we have FP = FC = 2
√

2, and so BF =
√

32 − (2
√

2)2 = 1. It follows that

BC = BF + FC = 1 + 2
√

2.

Remark. P actually lies on AC since ∠FPC = ∠FCP = ∠FQB = ∠APE.

A B

CD

E
FP

Q

18. Pick any contestant x. Suppose he has played against y1, y2, ..., y100 (call these Group

Y contestants). Denote the contestants who have not played against x by z1, z2, ..., zm
(call these Group Z contestants).

x

y1

y2

y100

z1

z2

zm

A Group Y contestant (who has played against x) has exactly 50 common opponents with

x (who must be Group Y contestants), and so has played against exactly 100−1−50 = 49

Group Z contestants. On the other hand, since a Group Z contestant has not played

against x, he has exactly 4 common opponents with x (who must be Group Y contestants).

Thus the number of games between a Group Y contestant and a Group Z contestant is

equal to 100× 49 as well as 4m. It follows that these numbers are equal, and so

n = 1 + 100 +m = 1 + 100 +
100× 49

4
= 1326.

Remark. The scenario described in the question is indeed possible. Note that the answer

is actually

(
52

2

)
. To construct the scenario, label the contestants by 2-element subsets
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of {1, 2, ..., 52}, and let two contestants play a game if and only if their corresponding

subsets have a common element. It is easy to check that all given conditions are satisfied.

19. For convenience we shall call ‘a student whose class number is even’ an even student. We

make the following observations.

(1) Every question is solved by at least one even student (as the teacher could choose all

even students).

(2) Similarly, every question is solved by at least one of students 5, 10, 15, 20.

(3) Students 2, 4, 6, ..., 18 (i.e. all even students except student 20) cannot solve all

questions (since any choice of the teacher must include either all even students or all

students whose numbers are multiples of 5). By (1), there must be a question which

was solved by student 20 but not by any other even student.

(4) For the same reason in (3), there must be a question which was solved by student 10

but not by any other even student.

(5) We claim that there exist at least two questions that were solved by student 2 but

not any other even student. Using the same argument as in (3), we can show that

there is at least one such question. Now suppose there is exactly one such question P .

Now neither student 10 nor 20 solved P , so by (2) we know that either student 5 or

15 solved P . Without loss of generality suppose student 5 did it. Consider students

4, 5, 6, 8, 10, 12, 14, 16, 18, 20 (i.e. all even students but with student 2 replaced

by student 5). Since student 2 and student 15 are missing, these students together

did not solve all questions. That means there is a question Q which cannot be solved

by these students (note that P 6= Q since student 5 solved P ). As student 2 cannot

solve Q either (since P is the only question solved by student 2 but not any other

even student), that means no even student could solve Q, which contradicts (1). This

proves the claim.

(6) For the same reason in (5), for each of students 4, 6, 8, 12, 14, 16, 18, there must

be at least two questions that were solved by that student but not any other even

student.

From (3), (4), (5) and (6), there are at least 1+ 1 +2 + 2×7 = 18 questions, and they are

clearly distinct (by considering which even student solved each question). On the other

hand, we can construct a paper with exactly 18 questions as follows:

• Question 10 — solved by student 10 only

• Question 20 — solved by student 20 only

• Question x for each x ∈ {2, 4, 6, 8, 12, 14, 16, 18} — solved by students 5 and x only

• Question x′ for each x ∈ {2, 4, 6, 8, 12, 14, 16, 18}— solved by students 15 and x only

It can be easily checked that all even students together solved all questions, all students

whose numbers are multiples of 5 together solved all questions, and that if not all even
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students are present and not all students whose numbers are multiples of 5 are present,

then at least one question is not solved by the students picked. The answer is thus 18.

Remark. Due to ambiguities in the wording used in the live paper, special consideration

was made during the grading of the live scripts to allow an alternative answer that could

arise from a different interpretation of the original problem.

20. It suffices to choose v and w since there is a unique choice for u = v + 2w after fixing v

and w. Note that 289 = 172 and 2023 = 7× 172. We consider two cases.

Case 1: w is divisible by 17

In this case v is also divisible by 17 (if not, then u = v+ 2w not divisible by 17,

so neither u2 +w2 nor v2 +w2 can be divisible by 17). Furthermore, any choice

of positive multiples of 17 not exceeding 2023 for each of v and w satisfies the

given condition. Hence there are 7 × 17 choices for each of v and w, and thus

(7× 17)2 sets of (u, v, w) in this case.

Case 2: w is not divisible by 17

There are 2023− 7× 17 = 7× 17× 16 choices for w. For each w, we try to find

v. First note that

(u2 + w2)(v2 + w2) ≡ (u2 − 16w2)(v2 − 16w2)

= (u+ 4w)(u− 4w)(v + 4w)(v − 4w)

= (v + 6w)(v − 2w)(v + 4w)(v − 4w) (mod 17)

Hence we can choose v as follows.

• From the above we see that v must be equal to −6w, 2w, −4w or 4w

modulo 17 (and they are distinct modulo 17).

• Each of the 4 choices of v modulo 17 corresponds to exactly choice of v

modulo 289 for which (u2+w2)(v2+w2) is divisible by 289 (see first remark

below).

• Each choice of v modulo 289 corresponds to 7 actual possible values of v

since 2023 = 7× 289.

Hence for each w, there are 4×7 choices for v. It follows that there are altogether

(7× 17× 16)× (4× 7) = 72 × 17× 64 sets of (u, v, w) in this case.

It follows that the answer is (7× 17)2 + 72 × 17× 64 = 72 × 17× 81 = 67473.

Remarks.

• To prove that each choice of v modulo 17 (among −6w, 2w, −4w and 4w) gives rise

to exactly one choice of v modulo 289 for which (u2+w2)(v2+w2) is divisible by 289,

we shall consider the case v ≡ 2w (mod 17) as the other three cases are essentially
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the same. Write v = 17k + 2w, where k can be considered modulo 17 since we are

considering v modulo 289. Then we have u = 17k + 4w and so

(u2 + w2)(v2 + w2) = [(17k + 4w)2 + w2][(17k + 2w)2 + w2]

= (172k2 + 8 · 17kw + 17w2)(172k2 + 4 · 17kw + 5w2)

≡ (8 · 17kw + 17w2)(4 · 17kw + 5w2)

≡ 17(8kw + w2)(5w2)

= 17(40w3k + 5w4) (mod 289)

and so we need 40w3k+ 5w4 ≡ 0 (mod 17). As 17 is prime and 40w3 is not divisible

by 17, we know that for each fixed w there is exactly one solution for k modulo 17.

• We could also avoid the above process of ‘lifting’ from modulo 17 to modulo 289

by observing that 382 ≡ −1 (mod 289) (or simply by knowing that such a square

number exists, or equivalently, that −1 is a quadratic residue modulo 289). In this

case we could directly write

(u2 + w2)(v2 + w2) ≡ (u2 − 382w2)(v2 − 382w2)

= (u+ 38w)(u− 38w)(v + 38w)(v − 38w)

= (v + 40w)(v − 36w)(v + 38w)(v − 38w) (mod 289)

and so v must be equal to one of −40w, 36w, −38w and 38w modulo 289, i.e. there

are exactly 4 choices for v modulo 289 for each fixed w.
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